import numpy as np import torch from typing import List, Tuple, Optional from dataclasses import dataclass @dataclass class DimensionalMarker: """Represents a security marker in high-dimensional space""" coordinates: np.ndarray signature: bytes timestamp: float verification_level: int class NurvSecure: def __init__(self, base_dimensions: int = 3, extra_dimensions: int = 5): self.base_dims = base_dimensions self.extra_dims = extra_dimensions self.total_dims = base_dimensions + extra_dimensions # Initialize the dimensional transformation matrices self.transform_matrices = self._initialize_transforms() def _initialize_transforms(self) -> List[torch.Tensor]: """Initialize transformation matrices for each extra dimension""" transforms = [] for i in range(self.extra_dims): # Create a random orthogonal matrix for dimension transformation random_matrix = torch.randn(self.total_dims, self.total_dims) q, r = torch.linalg.qr(random_matrix) transforms.append(q) return transforms def project_to_higher_dimensions(self, data: np.ndarray) -> List[torch.Tensor]: """Project base dimensional data into higher dimensions""" base_tensor = torch.tensor(data, dtype=torch.float32) projections = [] current_projection = base_tensor for transform in self.transform_matrices: # Apply transformation to get to next dimension next_projection = torch.matmul(current_projection, transform) projections.append(next_projection) current_projection = next_projection return projections def create_security_marker(self, data: np.ndarray, signature: bytes) -> DimensionalMarker: """Create a security marker in high-dimensional space""" import time # Project data into higher dimensions projections = self.project_to_higher_dimensions(data) # Use the highest dimensional projection for the marker final_projection = projections[-1].detach().numpy() return DimensionalMarker( coordinates=final_projection, signature=signature, timestamp=time.time(), verification_level=self.extra_dims ) def verify_marker(self, marker: DimensionalMarker, tolerance: float = 1e-6) -> bool: """Verify a security marker's authenticity""" # Project the marker's coordinates through our transformation verification_projections = self.project_to_higher_dimensions(marker.coordinates) # Check if the final projection matches within tolerance original_projection = torch.tensor(marker.coordinates) final_verification = verification_projections[-1] return torch.allclose(original_projection, final_verification, atol=tolerance) # Example usage if __name__ == "__main__": # Initialize NurvSecure with 3 base dimensions and 5 extra dimensions security_system = NurvSecure(base_dimensions=3, extra_dimensions=5) # Create some test data (e.g., a 3D point) test_data = np.array([1.0, 2.0, 3.0]) test_signature = b"test_signature" # Create a security marker marker = security_system.create_security_marker(test_data, test_signature) print(f"Created marker in {security_system.total_dims}-dimensional space") # Verify the marker is_valid = security_system.verify_marker(marker) print(f"Marker verification: {'Success' if is_valid else 'Failed'}")