import torch import numpy as np from dataclasses import dataclass from typing import List, Dict, Optional from enum import Enum class ThreatLevel(Enum): LOW = 1 MEDIUM = 2 HIGH = 3 CRITICAL = 4 @dataclass class ThreatResponse: threat_level: ThreatLevel affected_dimensions: List[int] recommended_actions: List[str] auto_response_enabled: bool response_timestamp: float class NurvSecureThreatResponse: def __init__( self, model_dimension: int = 2048, auto_response_threshold: float = 0.85, prediction_window: int = 100 ): self.model_dimension = model_dimension self.auto_threshold = auto_response_threshold self.prediction_window = prediction_window # Initialize threat prediction model self.threat_predictor = self._initialize_predictor() # Threat pattern memory self.threat_patterns = {} # Response strategies self.response_strategies = self._initialize_strategies() def _initialize_predictor(self) -> torch.nn.Module: """Initialize the threat prediction neural network""" return torch.nn.Sequential( torch.nn.Linear(self.model_dimension, self.model_dimension // 2), torch.nn.GELU(), torch.nn.Dropout(0.1), torch.nn.Linear(self.model_dimension // 2, self.model_dimension // 4), torch.nn.GELU(), torch.nn.Linear(self.model_dimension // 4, len(ThreatLevel)) ) def _initialize_strategies(self) -> Dict[ThreatLevel, List[str]]: """Initialize response strategies for different threat levels""" return { ThreatLevel.LOW: [ "Increase monitoring frequency", "Log suspicious patterns", "Update dimensional markers" ], ThreatLevel.MEDIUM: [ "Enable additional security layers", "Rotate security markers", "Alert system administrators", "Begin pattern analysis" ], ThreatLevel.HIGH: [ "Lock affected dimensions", "Initialize emergency protocols", "Deploy countermeasures", "Begin system-wide scan", "Notify all stakeholders" ], ThreatLevel.CRITICAL: [ "Activate quantum encryption", "Isolate affected systems", "Deploy all countermeasures", "Initialize system recovery", "Execute emergency shutdown if necessary" ] } def predict_threats(self, dimensional_data: torch.Tensor) -> List[float]: """Predict potential threats based on dimensional data""" with torch.no_grad(): predictions = self.threat_predictor(dimensional_data) return torch.softmax(predictions, dim=-1).numpy() def analyze_pattern( self, pattern_data: torch.Tensor, historical_data: Optional[torch.Tensor] = None ) -> Dict[str, float]: """Analyze threat patterns and calculate risk metrics""" # Pattern analysis using historical data if historical_data is not None: pattern_similarity = torch.cosine_similarity( pattern_data.flatten(), historical_data.flatten(), dim=0 ) else: pattern_similarity = torch.tensor(0.0) # Calculate risk metrics volatility = torch.std(pattern_data, dim=0).mean() intensity = torch.max(pattern_data) / torch.mean(pattern_data) return { "pattern_similarity": pattern_similarity.item(), "volatility": volatility.item(), "intensity": intensity.item() } def generate_response( self, threat_predictions: List[float], affected_dims: List[int] ) -> ThreatResponse: """Generate appropriate response based on threat level""" import time # Determine threat level threat_level = ThreatLevel(np.argmax(threat_predictions) + 1) # Get recommended actions actions = self.response_strategies[threat_level] # Determine if auto-response should be enabled auto_response = max(threat_predictions) > self.auto_threshold return ThreatResponse( threat_level=threat_level, affected_dimensions=affected_dims, recommended_actions=actions, auto_response_enabled=auto_response, response_timestamp=time.time() ) def execute_response(self, response: ThreatResponse) -> bool: """Execute the recommended response actions""" if response.auto_response_enabled: for action in response.recommended_actions: # Execute each action based on threat level if response.threat_level == ThreatLevel.CRITICAL: self._execute_critical_response(action) else: self._execute_standard_response(action) return True return False def _execute_critical_response(self, action: str): """Execute critical-level response actions""" # Implement critical response protocols pass def _execute_standard_response(self, action: str): """Execute standard response actions""" # Implement standard response protocols pass def update_threat_patterns(self, new_pattern: torch.Tensor): """Update the known threat patterns database""" pattern_hash = hash(new_pattern.numpy().tobytes()) self.threat_patterns[pattern_hash] = { 'pattern': new_pattern, 'timestamp': time.time(), 'frequency': self.threat_patterns.get(pattern_hash, {}).get('frequency', 0) + 1 }